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Learning objectives
You should:

Understand why model transformations are necessary.

Differentiate between transforming the data and formulating a new model.

Apply common transformations (log, square root) to the response variable.

Interpret the results of a log-transformed model.
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Why do we perform model transformations?

When data does not meet LINE assumptions, we can attempt transformations to improve the model fit before
considering more complex models.

Transformations linearise (or at least, attempt to) the relationship between the response and predictor
variables.

Not cheating! We are improving the model fit, not changing the data arbitrarily.
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The idea behind transformations

Given a simple model between two variables,  and :

Where the relationship is not linear, we may end up with a model that does not fit the data well:

y x

y ∼ x
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Two ways to transform

We can either formulate a new model that better fits the data, or transform the data to better fit the model. Both
methods are essentially equivalent.
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It’s not easy to formulate a new model

It turns out that you need a lot of domain knowledge to formulate a new model.

To fit the model to this particular dataset, we need to formulate:

y = a × 2 +x b

Transforming the data is easier. Basically, we can transform the response variable and approximate the model:

It is not perfect and may even introduce issues, but it can be a good starting point. It is also easier to do when
dealing with complex multi-factorial models.

log(y) ∼ x
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How do we transform data?

Irregardless of the complexity of the model, apply the transformation to the response variable:

y ∼ x ​ +1 x ​ +2 … + x ​ →n f(y) ∼ x ​ +1 x ​ +2 … + x ​n

Depending on the relationship between the response and predictor variables, we can apply different
transformations:

Logarithmic transformation: : right skewed data

Square root transformation: : count data with many small values

Reciprocal transformation: : when other transforms do not work

f(y) = log(y)

f(y) = ​y

f(y) = ​

y
1

In most cases, a logarithmic transformation is a good starting point. It is also easier to interpret the results.
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Interpretation of a log-transformed model

Given a model:

where we are transforming the response variable  using the natural logarithm, , then for a one-unit
increase in , the response variable  increases by a factor of .

We can also use estimated marginal means to interpret the results in R, where back-transforms can be
automatically calculated to the model.

log(y) = β ​ +0 β ​x1

y log(y)
x y β ​ ×1 100%
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Example

New York City skyline enveloped in heavy smog, May 1973. Photo by Chester Higgins/NARA (CC BY-NC 2.0)
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Air quality in New York City, 1973

Is air quality (ozone concentration) in New York City influenced by solar radiation? The model is:

ozone ∼ solar radiation
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Assumptions
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Did the model assumptions hold?

Linearity: the relationship between ozone and solar radiation is not linear, evident fan-shape in the residual vs
fitted plot.

Normality: the residuals in the qq-plot are “u-shaped”, indicating a positively skewed distribution.

Equal variance: the residuals are not homoscedastic – increasing variance with increasing fitted values seen in
the scale-location plot, although it is not severe (not more than 2 standard deviations).
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Transforming the data

Given the non-linear relationship between ozone and solar radiation, we can apply a logarithmic transformation to
the response variable:

log(ozone) ∼ solar radiation
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Is the model a better fit?

Yes! Fanning in the residual vs fitted plot is reduced, and the “u-shaped” distribution in the qq-plot is no longer
evident. Scale-location plot shows a more consistent variance across the fitted values.

How do we interpret the results?

Call:

lm(formula = log(Ozone) ~ Solar.R, data = airquality)

Residuals:

Min       1Q   Median       3Q      Max 

-2.64991 -0.56329  0.02199  0.55373  1.47755 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 2.6152491  0.1666990  15.688  < 2e-16 ***

Solar.R     0.0043326  0.0008097   5.351 4.88e-07 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7741 on 109 degrees of freedom

(42 observations deleted due to missingness)

Multiple R-squared:  0.208, Adjusted R-squared:  0.2008 

F-statistic: 28.63 on 1 and 109 DF,  p-value: 4.885e-07
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So, is transformation necessary?

Let’s compare the summaries of both models. This is sometimes called a .sensitivity analysis

Untransformed model Log-transformed model

summary(fit)1

Call:

lm(formula = Ozone ~ Solar.R, data = airquality)

Residuals:

Min      1Q  Median      3Q     Max 

-48.292 -21.361  -8.864  16.373 119.136 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 18.59873    6.74790   2.756 0.006856 ** 

Solar.R      0.12717    0.03278   3.880 0.000179 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 31.33 on 109 degrees of freedom

(42 observations deleted due to missingness)

Multiple R-squared:  0.1213,    Adjusted R-squared:  0.1133 

F-statistic: 15.05 on 1 and 109 DF,  p-value: 0.0001793
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Interpretation trade-offs

The untransformed model is easier to interpret: for every 1 W/m² increase in solar radiation, ozone
concentration is predicted to increase by ~0.13 ppb.

However, this model does not fit the data well and violates several assumptions, so we cannot be confident in
this prediction.

The log-transformed model fits the data better, but is more difficult to interpret.

A 1 W/m² increase in solar radiation is associated with a 261.52, 0.43% increase in ozone concentration.

We can also back-transform the results to the original scale, but this gives us the median change in ozone
concentration, not the mean.

Verdict: If the goal is to understand the relationship between variables and make predictions, the transformed
model is better. If the goal is simple interpretation and the model violations are not severe, the untransformed
model may be acceptable – most biologists prioritise interpretability.

A sensitivity analysis is quick and easy to perform, so it is worth doing as soon as you are unsure of your model’s
assumptions (happens often).
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Questions to consider

When should you consider transforming your data versus fitting a more complex model (e.g., a generalised
linear model)?

How do you choose the appropriate transformation for your data?

What are the challenges in interpreting the coefficients of a log-transformed model, and how can back-
transformation help?

Can transformations fix all violations of model assumptions? When might they not be enough?
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Thanks!
This presentation is based on the  and is licensed under a 

. A pdf version of this document can be found .
SOLES Quarto reveal.js template Creative Commons

Attribution 4.0 International License here
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https://github.com/usyd-soles-edu/soles-revealjs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://127.0.0.1:3276/L04c-model-transformations.pdf

