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Learning objectives
You should:

Understand how to include multiple predictors in a model.

Be able to interpret the coefficients of a multiple linear regression (MLR) model and report the results.

Know how to assess assumptions of a MLR model.

Understand the concept of multicollinearity and how to check for it in a MLR model.

Be able to understand when to include interactions in a model and how to interpret them, including how to
visualise interactions.
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— 

“Life is really simple, but we insist on making it complicated.”

Confucius
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https://en.wikipedia.org/wiki/Confucius
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Expanding a model

We start with the simple model:

body mass ∼ flipper length

But, we know that there are other (possible) factors that may influence the body mass of a penguin.

Sex

Species

Bill length

It is rarely the case that a response variable is influenced by a single explanatory variable.
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How do we include multiple predictors in a model?

body mass ∼ flipper length

y ∼ x

We add more predictors to the model by including them in the equation:

where  are the predictors that can be continuous or categorical – or both.

y ∼ x ​ +1 x ​ +2 x ​ +3 … + x ​n

x ​,x ​,x ​, … ,x ​1 2 3 n

Examples

 – all continuous

 – at least one continuous, one categorical

 – all categorical

body mass ∼ flipper length + bill depth

body mass ∼ flipper length + species

body mass ∼ sex + species
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Simple is best

 – all continuous

 – at least one continuous, one categorical

 – all categorical

The simplest model is one that is ADDITIVE – where in theory, each predictor contributes to the response variable
independently of the other predictors.

body mass ∼ flipper length + bill depth

body mass ∼ flipper length + species

body mass ∼ sex + species

Once the model is built, we can start to think about:

data structure (e.g. continuous, categorical)– which defines the “traditional” name of the model –
Continuing…

interactions between predictors – Week 4 (this week)

transformation to better fit the model – Week 4 (this week)

the purpose of the predictors in the model (i.e. whether a predictor is considered a control, covariate, random
variable, or fixed variable) – Weeks 4 & 5
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In this lecture, we will focus on models with multiple predictors:

where all predictors are continuous variables – the multiple linear regression (MLR), and its interpretation.

Study design

Response variable: body mass (g)

Predictors: flipper length (mm) and bill depth (mm)

Control variables: none

We define no control variables in this model, so both flipper length and bill depth are main effects of interest. More
on control variables next week.

body mass ∼ flipper length + bill depth

8



Why do we need multiple variables?

—  (1915-2000), The Future of Data Analysis (1962)

The combination of some data and an aching desire for an answer does not ensure that a reasonable answer
can be extracted from a given body of data.

John Tukey
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https://en.wikipedia.org/wiki/John_Tukey


Controls and interactions

Control – Add a variable which we believe may influence the response variable, but we are not interested in its
effect on the response.

Interaction – Because we added more variables, we want to assess how one variable influences the
relationship between the other variables.

Depending on the research question(s), the above two reasons are common motivations for including multiple
variables in a model.

Once interactions are included the interpretation of the model then falls on either the:

main effects (interpretaition of the predictors that are of interest), or

interactions (interpretation of how predictors interact with each other)

Important
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Predictive power

Include multiple variables to increase the predictive power of the model.

Focus shifts – from interpretation to prediction.

Anything goes – as long as the model “performs” better than before.

Not the focus of BEDA but important in other fields (e.g. machine learning).

Simple models are preferred in biological research, especially when data is collected from the field. Try not to overcomplicate the model and
include additional variables only if they are necessary (controls or interactions) or part of the research question.

Important
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Additional considerations of MLR

Once we include multiple predictors in the model, the interpretation of the model changes:

1. Coefficients ( ) are now conditional on the other predictors being fixed.

2. Hypotheses can be tested for each predictor via traditional p-values.

3. Interactions are now possible and should be considered when including multiple predictors. If interactive
effects are statistically significant, we place more emphasis on the interaction terms than the main effects.

4. Multi-collinearity – the correlation between predictors – are considered if interactions are not included;
otherwise ignore it if interactions are included and significant.

5. Transformations are more common in MLR due to the scale of the predictors. This will be covered tomorrow.

β ​i
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Example: penguins dataset
Starting with a simple linear regression model…
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Simple linear regression

Four steps:

1. Fit the model, but don’t interpret yet. Visualise the relationship (if possible).

2. Check assumptions from diagnostic plots (residuals).

3. Select a different model or transform data if assumptions are violated, go back to (2). Skip if assumptions are
met.

4. Interpret the model.

body mass ∼ flipper length
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1. Model/plot

body mass ∼ flipper length
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2. Diagnostic plots (assumptions) - performance

body mass ∼ flipper length
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2. Diagnostic plots (assumptions)

body mass ∼ flipper length
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4. Interpret

body mass ∼ flipper length

Call:

lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)

Residuals:

Min       1Q   Median       3Q      Max 

-1058.80  -259.27   -26.88   247.33  1288.69 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)       -5780.831    305.815  -18.90   <2e-16 ***

flipper_length_mm    49.686      1.518   32.72   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 394.3 on 340 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared:  0.759, Adjusted R-squared:  0.7583 

F-statistic:  1071 on 1 and 340 DF,  p-value: < 2.2e-16
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4. Interpret

body mass ∼ flipper length

Table 1: Summary table of regression analysis for predicting body mass from flipper length. Note: σ is the standard error of the residuals.

Characteristic Beta p-value

(Intercept) -5,781 <0.001

flipper_length_mm 50 <0.001

R² = 0.759; σ = 394

The results of the multiple linear regression analysis indicate that the flipper length is a highly significant
predictor of the body mass of penguins (p < 0.001, ). The model demonstrates a strong relationship
between the two variables, explaining 75% of the variance in the body mass (R2 = 0.76). Specifically, the
analysis reveals that for every 1 mm increase in flipper length, the body mass of a penguin increases by 50 g.

Table 1
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Adding more predictors

20



A multiple linear regression model

Four steps (it doesn’t change!):

1. Fit the model, but don’t interpret yet. Visualise the relationship (if possible).

2. Check assumptions from diagnostic plots (residuals), including multicollinearity.

3. Select a different model or transform data if assumptions are violated, go back to (2). Skip if assumptions are
met.

4. Interpret the model.

body mass ∼ flipper length + bill depth
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Multicollinearity

Multicollinearity is the correlation between predictors in the model.

Problem:

➟ It can inflate the standard errors of the coefficients (i.e. make error margins wider), making the
interpretation of the coefficients less reliable.

➟ Interpretation of coefficients becomes difficult – since they are correlated, the effect of one predictor is
confounded by the other predictor.

Solution: Check the correlation between predictors and consider removing one of the predictors if the
correlation is too high. Rule of thumb: .

➟ Alternatively: check the variance inflation factor (VIF) – a measure of how much the variance of the
coefficient is inflated due to multicollinearity. A value of 5 or more is considered problematic.

Multicollinearity is not a problem if

There is significant interaction. We won’t interpret the main effects anyway.

The goal is prediction. Although, it could affect computational efficiency.

r > 0.7

Note

22



1. Model/plot

Visualising MLR is challenging – perhaps the maximum number of predictors we can visualise is 2 against the
response variable. In most cases we rely on the diagnostic plots to interpret the model.

body mass ∼ flipper length + bill depth

WebGL is not supported by your
browser - visit https://get.webgl.org
for more info
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2. Diagnostic plots (assumptions)

body mass ∼ flipper length + bill depth
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2. Multicollinearity

Correlation between predictors:

Plot the predictors:

flipper_length_mm bill_depth_mm

flipper_length_mm                 1            NA

bill_depth_mm                    NA             1
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2. Multicollinearity

Or, use performance package and check the Collinearity Diagnostics:
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4. Interpret

Characteristic Beta p-value

flipper_length_mm 52 <0.001

bill_depth_mm 23 0.089

R² = 0.761; Adjusted R² = 0.760; σ = 393

Interpretation (coefficients are now conditional)

Flipper length is a significant predictor of body mass (p < 0.001), with a positive relationship where, for every 1
mm increase in flipper length, the body mass of a penguin increases by 52 g, holding bill depth constant.

Bill depth is also a significant predictor of body mass (p < 0.001), with a positive relationship where, for every 1
mm increase in bill depth, the body mass of a penguin increases by 23 g, holding flipper length constant.

Both predictors explain 76% of the variance in body mass (adjusted R2 = 0.76).

body mass ∼ flipper length + bill depth
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Interactions
Will the relationship between A and B change, if C changes?
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When to include interactions?

For any predictor that is included in the model and is not used as a control, we should consider interactions with
other predictors.

Why interactions?

Interactions allow us to assess how one predictor influences the relationship between the response variable and
another predictor. Examples:

Does sunlight exposure affect plant growth? It depends on water availability – i.e. sunlight exposure and water
availability may interact such that the effect of sunlight exposure on plant growth is different depending on
the level of water availability.

Does the effect of a drug on blood pressure depend on the age of the patient? It depends on the age of the
patient – i.e. the effect of the drug on blood pressure may be different depending on the age of the patient.

29



Recall the plot of flipper length and bill depth

Do you think the two predictors are interacting?
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Including interactions in the model

For a given MLR model

we can declare an interaction term between  and  by changing the operator from  to  or :

y ∼ x ​ +1 x ​2

x ​1 x ​2 + × ∗

y ∼ x ​ ×1 x ​2

So for the current MLR model from the pengins dataset:

becomes:

which is also equivalent to:

body mass ∼ flipper length + bill depth

body mass ∼ flipper length × bill depth

body mass ∼ flipper length + bill depth + flipper length:bill depth
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Checking the model

Four steps (it doesn’t change!):

1. Fit the model, but don’t interpret yet. Visualise the relationship (if possible).

2. Check assumptions from diagnostic plots (residuals), including multicollinearity.

3. Select a different model or transform data if assumptions are violated, go back to (2). Skip if assumptions are
met.

4. Interpret the model.

body mass ∼ flipper length × bill depth
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2. Diagnostic plots (assumptions)

body mass ∼ flipper length × bill depth
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4. Interpret

If the interaction term is significant, it means that the interpretation of the main effects are most likely
incorrect – we no longer interpret the main effects. Instead, we figure out how those main effects are
interacting.

Call:

lm(formula = body_mass_g ~ flipper_length_mm * bill_depth_mm, 

data = penguins)

Residuals:

Min      1Q  Median      3Q     Max 

-938.88 -253.96  -28.25  220.66 1048.33 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)                     -36097.064   4636.271  -7.786 8.55e-14 ***

flipper_length_mm                  196.074     22.603   8.675  < 2e-16 ***

bill_depth_mm                     1771.796    273.003   6.490 3.06e-10 ***

flipper_length_mm:bill_depth_mm     -8.596      1.340  -6.414 4.78e-10 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 371.8 on 338 degrees of freedom

(2 observations deleted due to missingness)

M lti l R d 0 787 Adj t d R d 0 7851
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Interaction plots

To view the interaction, we need to work out at what “level” of a variable the relationship between the response
variable and the other predictor is significant.

This can be automated in both R and Jamovi.
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Interaction plot in Jamovi

36



Interpreting the plot

Results indicate a significant interaction between flipper length and bill depth (p < 0.001). The interaction plot
shows that the relationship between flipper length and body mass is dependent on bill depth. Specifically:

For smaller flipper lengths (e.g. 172 mm), increasing bill depth is associated with an increase in body mass.

For larger flipper lengths (e.g. 231 mm), increasing bill depth is associated with a decrease in body mass.

Note, R provides some information about what is “small” or “large” in the interaction plot, whereas Jamovi does
not.

Does bill depth affect the predicted outcome? It depends on flipper length!
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What is actually happening?

It is likely that something else is confounding the relationship between flipper length and body mass, as we have
observed clustering in the plot of flipper length and bill depth.
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Adding even more predictors: live demonstration
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End of demonstration
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Questions to consider

What does it mean for a model to be additive?

How do we interpret the coefficients of a multiple linear regression model?

What are the assumptions of a multiple linear regression model?

How do we check for multicollinearity in a multiple linear regression model?

What is an interaction term in a multiple linear regression model, and how can we interpret it if it is significant?
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Thanks!
This presentation is based on the  and is licensed under a 

. A pdf version of this document can be found .
SOLES Quarto reveal.js template Creative Commons

Attribution 4.0 International License here
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https://github.com/usyd-soles-edu/soles-revealjs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://127.0.0.1:5027/L04a-mlr.pdf

