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Learning objectives
You should:

Understand the concept of a (general) linear model.

Be able to come up with a linear model equation and interpret the coefficients and error term.

Be able to interpret the results of a linear model.

Understand that a linear model needs to be validated by checking assumptions.

Be able to design a study with linear modelling in mind.
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Introduction to linear modelling

― Barbara Kingsolver,  (2012)

“Cars with flames painted on the hood might get more speeding tickets. Are the flames making the car go
fast? No. Certain things just go together. And when they do, they are correlated. It is the darling of all human
errors to assume, without proper testing, that one is the cause of the other.”

Flight Behavior
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https://en.wikipedia.org/wiki/Flight_Behavior


Origin

Adrien-Marie Legendre (1752 – 1833), French
Mathematician, first introduced the method of
least squares in 1806. No known portrait of
Legendre exists. Source: Wikipedia

Carl Friedrich Gauss (1777 – 1855), German
mathematician, astronomer, and physicist.
Published the method of least squares in 1809.
Source: Wikipedia

Francis Galton (1822 – 1911), cousin of Charles
Darwin, inventor of the regression line and the
correlation coefficient. Source: Wikipedia
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https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Francis_Galton


Galton’s data

928 children of 205 pairs of parents.

Height of parents and children measured in inches.

Size classes were binned (hence data looks discrete).
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Scatterplot

We want to explain this noisy relationship…
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Regression line

We want to explain this noisy relationship… using a deterministic model, i.e. a fixed equation.
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How does linear modelling work?
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Least squares

– Stigler, 1981 (emphasis added)

The method of least squares is the automobile of modern statistical analysis: despite its limitations,
ocassional accidents and incidental pollution, it and its numerous variations, extensions, and related
conveyances carry the bulk of statistical analyses, and are known and valued by nearly all.
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Residuals, ϵ̂

​ =ϵ ​î y ​ −i ​y ​î
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How do we fit a line?

Minimise the sum of the squared residuals:

argmin ​ ​(y ​ −β ​,β ​0 1

i=1

∑
n

i (β ​ + β ​x ​))0 1 i
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Source

1. Draw a line.

2. Calculate the residuals for each point.

3. Square the residuals, sum them up.

4. Repeat for all possible lines.

5. Choose the line with the smallest sum of squared
residuals.

6. Calculate the slope and intercept of that line.
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https://github.com/Enchufa2/ls-springs


The linear model
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Linear regression

A statistical method that fits a linear model equation to explain the relationship between two variables,  and .
The relationship is a general linear model that has the following form:

where  is the error term that accounts for the variability in  that is not explained by .

x y

y = c + mx + ϵ

ϵ y x

In other words, we want to explain that changes in  can be estimated by the slope  and the intercept .y m c
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Modelling

It would be useful to understand that in:

we are fitting a deterministic straight line equation  to the data, with an error term  that accounts for the
variability in  that is not explained by . Here are more ways to think about it:

y = c + mx + ϵ

c + mx ϵ

y x

Response = Prediction + Error

Response = Signal + Noise

Response = Deterministic + Random

Response = Explainable + Everything else
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What are we checking?

Estimate the coefficients (intercept c and slope m).

Once fitted, the line is fixed; only the errors vary.

Assessment of the model rests on assessing the errors – because nothing else changes.

y = c + mx + ϵ

It’s just about the errors… source: Tim & Eric Awesome Show, Great Job! Episode 3 of season 4.
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Anatomy of a linear model

can be expressed as

y = c + mx + ϵ

where  is the -th observation of ,  is the -th observation of , and  is the -th observation of the error
term.

y ​ =i β ​ +0 β ​x ​ +1 i ϵ ​i

y ​i i y x ​i i x ϵ ​i i

The model is a general linear model with coefficients  and  that are estimated from the data. These
coefficients represent the intercept and slope of the linear equation, respectively.

β ​0 β ​1
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Fitting Galton’s data

Fitting a linear model will generally produce a result that looks like this:

Code

Characteristic Beta SE Statistic 95% CI p-value

(Intercept) 24 2.81 8.52 18, 29 <0.001

parent 0.65 0.041 15.7 0.57, 0.73 <0.001

R² 0.210

Adjusted R² 0.210

Abbreviations: CI = Confidence Interval, SE = Standard Error

And this results in the following model:

Beta coefficients are the estimated coefficients of the linear model.

SE tells us how much the coefficient estimate might vary from the true value.

95% CI gives us a range of values that we are 95% confident contains the true coefficient.

R-squared tells us how much of the variability in the response variable is explained by the model. The
adjusted R-squared adjusts for the number of predictors in the model (in this case, just one).

=child 23.94 + 0.65(parent)
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Interpretation of the model

=child 23.94 + 0.65(parent)

child = β ​ +0 β ​(parent) +1 ϵ

y = c + mx + ϵ

The intercept  is the expected value of  when .

The slope  is the change in  for a one-unit change in .

The error term  is the variability in  that is not explained by .

β ​0 y x = 0

β ​1 y x

ϵ ​i y x
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Results

Code

Characteristic Beta SE Statistic 95% CI p-value

(Intercept) 24 2.81 8.52 18, 29 <0.001

parent 0.65 0.041 15.7 0.57, 0.73 <0.001

R² 0.210

Adjusted R² 0.210

Abbreviations: CI = Confidence Interval, SE = Standard Error

The linear regression analysis revealed a significant positive relationship between parent height and child height
(β = 0.65, R2 = 0.21, p < 0.001). This indicates that for every one-inch increase in parent height, the child’s height is
estimated to increase by 0.65 inches.
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Example 2: penguins

Code

Characteristic Beta 95% CI p-value

(Intercept) -2,536 -4,442, -629 0.009

flipper_length_mm 33 23, 43 <0.001

R² 0.219

Adjusted R² 0.214

Abbreviation: CI = Confidence Interval

The results indicate a significant positive relationship between flipper length and body mass in Adelie penguins (β
= 33, R2 = 0.22, p < 0.001) indicating that for every 1 mm increase in flipper length, the body mass is expected to
increase by 33 grams. Based on the R2 value he model explains approximately 22% of the variance in body mass.
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Example 3: iris

Code

Characteristic Beta 95% CI p-value

(Intercept) 1.2 0.73, 1.6 <0.001

Sepal.Width 0.08 -0.05, 0.21 0.2

R² 0.032

Adjusted R² 0.011

Abbreviation: CI = Confidence Interval

The analysis found no significant relationship between sepal width and petal length in Iris setosa (β = 0.08, p = 0.2).
The model explains only about 3% of the variance in petal length (R2 = 0.032), and the confidence interval for the
slope includes zero. This indicates that sepal width is not a meaningful predictor of petal length in this species.

Importantly:

Non-significant results are still valid results – they tell us something important about the data

Report the actual p-value (don’t just say “p > 0.05”)

Acknowledge the low explanatory power (low R2)

Avoid over-interpreting – don’t force biological explanations for non-significant relationships
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Example 4: air quality

Code

Characteristic Beta 95% CI p-value

(Intercept) 10 9.1, 12 <0.001

Solar.R 0.00 -0.01, 0.00 0.5

R² 0.003

Adjusted R² -0.004

Abbreviation: CI = Confidence Interval

The analysis shows no significant relationship between solar radiation and wind speed (β = 0.00, 95% CI: -0.01 to
0.00, p = 0.5). The model does not explain much of the variance in wind speed (R2 = 0.003). This result indicates that
solar radiation and wind speed are influenced by different meteorological processes and are not expected to be
directly related.
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BUT WAIT! How do we know if the model is any good?

Before we can interpret the results of a linear model, we need to check if the model is a good “fit”.

Nothing will stop you from fitting a linear model to data, just as nothing can stop me from fitting a non-linear
model to the same data.
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Assessing the validity of the linear model
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Assumptions of linear regression

Remember the acronym LINE for the key assumptions:

Linearity: Errors ( ) are randomly scattered around the predicted values.

Independence: Errors ( ) are independent of each other.

Normality: Errors ( ) follow a normal distribution.

Equal Variance: Errors ( ) have constant variance (homoscedasticity).

These assumptions apply to the errors ( ), not directly to the response variable ( ) or the relationship between 
and .

ϵ

ϵ

ϵ

ϵ

ϵ y x

y

How assumptions help “validate” a model

If the assumptions are met, then we can be confident that the model is a good representation of the data.

If they are not met, the results are still presented, but our interpretation of the model is likely to be flawed.

Importantly, we will never have “perfect” models, so assessing their validity is an ongoing process (and
requires experience).

We will explore this next week (when we check model assumptions).
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Thanks
This presentation is based on the  and is licensed under a 

. A pdf version of this document can be found .
SOLES Quarto reveal.js template Creative Commons

Attribution 4.0 International License here
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https://github.com/usyd-soles-edu/soles-revealjs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://127.0.0.1:4738/L02b-linear-model.pdf

